Prediction of Frictional Pressure Drop Using Artificial Neural Network for Air-water Flow through U-bends
نویسندگان
چکیده
منابع مشابه
An Artificial Neural Network Model for Predicting the Pressure Gradient in Horizontal Oil–Water Separated Flow
In this study, a three–layer artificial neural network (ANN) model was developed to predict the pressure gradient in horizontal liquid–liquid separated flow. A total of 455 data points were collected from 13 data sources to develop the ANN model. Superficial velocities, viscosity ratio and density ratio of oil to water, and roughness and inner diameter of pipe were used as input parameters of ...
متن کاملAn Artificial Neural Network Model for Predicting the Pressure Gradient in Horizontal Oil–Water Separated Flow
In this study, a three–layer artificial neural network (ANN) model was developed to predict the pressure gradient in horizontal liquid–liquid separated flow. A total of 455 data points were collected from 13 data sources to develop the ANN model. Superficial velocities, viscosity ratio and density ratio of oil to water, and roughness and inner diameter of pipe were used as input parameters of ...
متن کاملPrediction of Pressure Drop of Al2O3-Water Nanofluid in Flat Tubes Using CFD and Artificial Neural Networks
In the present study, Computational Fluid Dynamics (CFD) techniques and Artificial Neural Networks (ANN) are used to predict the pressure drop value (Δp ) of Al2O3-water nanofluid in flat tubes. Δp is predicted taking into account five input variables: tube flattening (H), inlet volumetric flow rate (Qi ), wall heat flux (qnw ), nanoparticle volume fraction (Φ) and nanoparticle diameter (dp ...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Prediction of Entrance Length for Magnetohydrodynamics Channels Flow using Numerical simulation and Artificial Neural Network
This paper focuses on using the numerical finite volume method (FVM) and artificial neural network (ANN) in order to propose a correlation for computing the entrance length of laminar magnetohydrodynamics (MHD) channels flow. In the first step, for different values of the Reynolds (Re) and Hartmann (Ha) numbers (600<ReL increases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Technology
سال: 2013
ISSN: 2212-0173
DOI: 10.1016/j.protcy.2013.12.426